NEWS FEATURE ## **JBIS Index 2021 Volume 74** The Journal of the British Interplanetary Society (JBIS) is one of the two principal peerreviewed publications covering all aspects of space. JBIS was first published in the 1930s, published its first interstellar papers in the early 1950s and has continued to publish on all aspects of interstellar studies since then. The Principium feature, *The Journals*, and its predecessor in our Interstellar News section has identified these papers since Issue 26, August 2019. With the kind permission of the editor we reproduce the annual Index published in the final 2021 issue. | Contents by subje | ect | | | power requirements | 202 | Drake equation | 258, 401 | |--|---|---|-----------------------------------|--|-----------------|---|-------------------------| | contents by subje | | | - | resources | 289 | Dysonian | 56 | | Α | | Hibernation | 97
434 | Mosquito-borne disease | 91 | extra-terrestrial probes | 47, 76, 414, 427, 468 | | Ablogenesis | 238 | Horology
Human spaceflight | 434 | Multi-generational travel | 162, 243, 419 | Fermi paradox
megastructures | 42, 409
193 | | Additive manufacturing | 374 | crew health | 107, 443 | NO | | methods | 414 | | ADS Library | 252 | EVA | 107 | Nanotechnology | 150 | METI | 47 | | Aerobraking | 278 | food supply | 374 | Near-Earth Objects | 2 | power beams | 196 | | Aerodynamics | | hibernation | 97 | Nematode worm (C. elegans) | 386 | signal beacons | 42, 414 | | re-entry | 448 | infection | 443 | Neptune | | target zones | 42 | | Alcubierre warp drive | 64 | interstellar | 162, 243, 419 | orbiter and probe | 342 | technosignatures | 193, 269 | | Ant colony algorithm | 101 | food and medicine | 107
374 | Neutrinos | 269 | Wow! signal | 196 | | Anthropology
Arcanum | 243, 419
342 | medical supplies
microflora | 443 | Nitrous oxide
Nutrition | 223
107 | Serpent (nuclear engine study)
Sociology | 202
185 | | Artificial intelligence | 101 | Hydroponics | 21 | O'Neill, Gerard K. | 234 | Soil production | 21 | | Asteroids | | Hyperspectral imaging | 91 | Oort Cloud | 358 | Solar sails | 278, 427, 468 | | Ceres | 212 | Hypothermia | 97 | Orbital mechanics | 358 | Solar power satellite | 202, 454 | | deflection | 2 | IJ | | 'Oumuamua | 427, 468 | Solar wind | 30 | | Earth co-orbital | 76 | | | PΩ | | Somerville-Bingham probe | 342 | | Earth Trojan | 76 | Infrastructure | 40.0 | | | Space access | 130 | | resources | 212, 278
238, 386 | space elevator In Situ Resource Utilisation | 454
156, 289 | Planets | 240 | Space agriculture | 21 | | Astrobiology
Attitude control | 238, 386 | In Situ Resource Utilisation
Interplanetary travel | 156, 289 | Neptune
robotic exploration | 342
101, 342 | Space colonisation
Space debris | 21, 140, 401 | | Avalon orbital habitat study | 234, 278 | Interstellar migration | 401 | surface rovers | 101, 342 | DISCOS database | 327 | | | 254, 270 | Interstellar object | 427,4 68 | Polaris (missile) | 300 | materials | 327 | | В | | Interstellar propulsion | 56, 64 | Power systems (see also Space power) | | removal | 459 | | Bacteria | 443 | Interstellar travel | 162, 243, 398, 419 | space-based solar power | 454 | Space elevator | 212, 454 | | BioCubeSat | 386 | K L | | Probiotics | 443 | Space exploration | 162 | | Bioscience | 386
300 | | 227 | Propulsion methods | | Space manufacturing | 278, 327 | | Black Arrow | 300 | Kalman filtering | 381
193 | beam-driven sail | 196 | Space medicine | 97, 374 | | British Interplanetary Society
BIS SPACE study | 21, 278 | Kardashev civilisation scale
Kuiper belt | 193 | braking
Bussard ramiet | 398, 448
56 | Space power
power transmission | 202 | | Re-inventing Space | 318 | objects | 342 | dark energy | 56 | superconductors | 332 | | SLV project | 130 | Launch sites | 352 | electric | 332, 427, 468 | Space probes | 342, 358 | | | | Launch vehicles | | electromagnetic | 367, 459 | Space safety | 0.12, 0.00 | | C D | | Black Arrow | 300 | fission | 309 | health risks | 443 | | Communications | 185, 381 | economics | 122 | gas core | 309 | space debris | 459 | | Cosmic expansion | 56 | failure tally curve | 284 | interstellar | 56, 64 | Space servicing | 83 | | Cubesats | 91, 113, 386 | market | 122 | magnetic sail | 398 | Space settlements | 140, 212, 234, 243, 401 | | Culture
Dark energy | 140
56 | nitrous oxide
reliability | 223
284 | magneto-plasmadynamic
nitrous oxide | 332
223 | Space systems
Space vehicle recovery | 381 | | Dark energy
Dark matter | 42 | Linguistics | 185 | nuclear plasma | 309 | Starlink | 193 | | | 42 | | 100 | nuclear thermal | 309 | Starshot | 196 | | E | | M | | propellantless | 398 | Starshot laser array | | | Earth defence | 2 | Magnetohydrodynamics | 448 | QSR | 150 | Statistics | 284 | | Earth observation | 91 | Manufacturing | | solar sail | 427, 468 | Stellar acceleration | 269 | | Economics
Environmental control system | 122, 278 | self-replication | 409 | solar thermal | 427, 468 | Stellar forces | 269 | | Environmental control system
Environmental protection | 21
342, 454 | Mars
biosphere | 156 | solar wind ion focussing | 30
64 | Stellar neutrino jet | 260 | | Environmental protection
Ethics | 342, 454 | colonisation | 156 | warp drive
wormship | 64
56 | Student projects Superconductors | 332, 448, 459 | | Evolution | 243, 401, 419 | crewed mission | 6 | Pulse launch system | 367 | Superluminal travel | 64 | | Exobiology | 238 | habitat | 6 | | | SWIFT thruster | 30 | | Exotic matter | 64 | resources | 156 | R | | T | | | Extinction events | 42 | settlements | 434 | Radar tracking | 76 | I . | | | Extra-terrestrial civilisation | 193, 252, 258 | terraforming | 156 | Radio noise | 381 | Terraforming | 156, 212 | | Extra-terrestrial intelligence
Extra-terrestrial probes | 42, 76, 185, 196, 401, 414
42, 76, 409 | Materials | 398 | Railgun | 367
332, 448 | Time measurement | 434 | | Extra-terrestrial probes
Extra-terrestrial resources | 47, 76, 409 | graphene
high energy density | 398
150 | Re-entry system
Religion | 332, 448
140 | Trans-Neptunian objects
Triton mission | 358
342 | | | 21 | nickel-titanium | 113 | Robotics | 83,101 | | 342 | | F G | | shape memory alloy | 113 | Rocket | 100,101 | UV | | | AST telescope | 193 | Measurement techniques | | hybrid | 223 | United Kingdom | | | Fermi paradox | 42,409 | time | 434 | nitrous oxide | 223 | launch vehicles | 130, 300 | | Formation flight | 459 | Mechanical systems | | quenching superconductor | 150 | nuclear deterrent | 300 | | Genetics
Global warming | 162,243,419
454 | solar panels | 07 107 274 200 442 | S | | spaceports | 342 | | Global warming
Globus cylinder | 454
234 | Medical aspects
METI (Messaging to ETI) | 97, 107, 374, 386, 443
47, 185 | Satellites | | Unst launch site
Von Neumann probes | 130, 352 | | Sraphene | 234
398 | MHD (magnetohydrodynamics) | 47, 185 | Satellites
attitude control | 459 | von iveumann probes | 405 | | Gravity assist trajectory | 358 | Mid-air retrieval | 319 | de-tumbling | 459
459 | 101 24 24 3 | | | Suidance systems (GNC) | 83 | Mission design | 358 | mega-constellations | 83 | WXYZ | | | | | Moon | | servicing | 83 | Watchmaking | 434 | | H | | bearned power | 202 | Self-replicating machines | 409 | Water | | | Habitable zones | 42, 258 | extra-terrestrial artefacts | 76 | SETI | 0_000 | abiogenesis | 238 | | Habitats, Mars | 6 | flight to Earth | 367 | bibliography | 252 | stagnant | 91 | Commercial subscriptions (<u>bis-space.com/shop/product/jbis-subscription/</u>) and membership for individuals (<u>bis-space.com/shop/product-category/subscriptions/membership/</u>) give access to JBIS. Membership includes access to JBIS - currently from £135.00 per year for ages 25-65 with discounts for younger and older members. BIS members receive a 20% discount on i4is membership (i4is.org/membership/).