• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer

Initiative for Interstellar Studies

Working towards the achievement of interstellar flight through knowledge to the stars - Starships in our lifetime

  • What we do
    • Education
      • Education
      • ISU Projects
      • Starship Engineer
      • SF Starships
      • STEM & Schools
      • Talk Series
      • Exploring Equations
      • LSI Summer Course
    • Technical
      • Project Dragonfly
      • Andromeda Probe
      • Project Glowworm
      • Project Lyra – Exploring Interstellar Objects
      • von Neumann AI Probe
      • Project World Ship
    • Sustainability
    • Enterprise
    • The Alpha Centauri Prize
    • X-Projects
    • I4IS-USA
    • In the media
  • Who we are
    • About Us
    • Board of Directors
    • Education
    • Researchers
    • Managers
    • Team i4is Gallery
    • Interstellar artists
      • David A Hardy
      • Adrian Mann
      • Alex Storer
      • Terry Regan
    • Contact us
  • Events
  • Publications
    • Principium
    • Axiom
    • Monographs & Reports
    • Books
    • App
    • Team Publications
    • Useful Resources
  • Blog
  • News
  • Members
    • Join Now
    • Login
  • Donate
You are here: Home / Starship Blog / Transcendence going interstellar: how the singularity might revolutionise interstellar travel

Transcendence going interstellar: how the singularity might revolutionise interstellar travel

22 June 2014

In the movie “Transcendence”, Dr. Will Caster’s consciousness, played by Johnny Depp, is “uploaded” into a quantum computer. This feat unleashes a cascade of rapidly accelerating technological changes, culminating into a “technological singularity”. It is probably the first time that the technological singularity plays a central role in a Hollywood blockbuster. However, the hypothetical concept of uploading one’s consciousness into a computer, also called “mind uploading” or “whole brain emulation”, has been a topic in science fiction for decades. Seemingly far-fetched, mind uploading might be actually not very far from reality. Recently, the European Union’s Human Brain Project has formulated its objective to simulate the human brain. With an anticipated budget of over one billion Euros, it is the largest project of this kind ever conducted. Although the Human Brain Project’s objective is to simulate the human brain, it has spurred discussions about the prospects of mind uploading. Mind uploading might have truly transformative consequences for our civilization. Among them are the potential for digital immortality and the creation of emulated minds which might transform knowledge work, as they can be copied and used on-demand for intellectually demanding tasks (Hanson, 2008a & 2008b).

Mind uploading also opens up exciting opportunities for interstellar flight.

Part of a poster for the movie “Transcendence.” Credit: Alcon Entertainment / DMG Entertainment / Straight Up Films.
Part of a poster for the movie “Transcendence.” Credit: Alcon Entertainment / DMG Entertainment / Straight Up Films.

In this article, I will try to give a brief overview of existing concepts for using mind uploading for interstellar travel, as well as proposing novel concepts, which might radically change the way humans would travel to the stars. Furthermore, potential mission architectures are presented, having profound consequences on the way such a mission accomplishes its objectives.

First of all, I clarify what is meant by “mind uploading” in this article. “Mind uploading” is understood here as the transfer of mental content, for example long term memory, or consciousness, from the brain substrate into an artificial device, a digital, analog, or quantum artificial neural network (Sandberg & Bostrom, 2008). Once uploaded, the mental content can be “run” on the device as a simulation or simply stored. Analogously, “mind downloading” is defined as the transfer of mental content from an artificial device to brain substrate. Mind downloading goes hand in hand with the recreation of the human body in its entirety. Otherwise, mind downloading would not make a lot of sense for interstellar travel. If the whole body is up- and downloaded, this can be termed “human uploading” or “whole body emulation”. In this article, the boundaries between “mind uploading” and “human uploading” are often blurred. They are therefore considered to be exchangeable.

The main objective of manned interstellar travel is transporting humans to another star system and starting a new civilization there. The basic idea of using mind uploading for interstellar travel is to upload the human mind and/or body and to recreate it at the target destination. To jump-start a new, thriving civilization at the target destination requires the transfer of knowledge for performing all necessary activities. Transporting humans in digital form has huge benefits for interstellar travel: Firstly, it leads to extreme mass savings. No longer are large habitats and complex life-supporting systems needed. At the same time it offers the capability to “resurrect” living humans at the target destination, including their knowledge and thus culture, thus greatly facilitating the start of a new civilization. Knowledge and technology is transferred from the emulated brains at the target destination, either by education or “hard-wiring” emulations into biological brains.

Of course, one could speculate about the radical possibility of the complete replacement of biological life by artificial life. In this scenario, the spacecraft would be rather the “seed” for a non-biological civilization (Kurzweil, 2005).

Interstellar colonization concepts based on mind uploading can be categorized as shown in Table 1.

Table 1: Colonization tasks mapped to interstellar colonization concepts based on mind uploading

Function Concept 1 Concept 2 Concept 3 Concept 4 Concept 5
Transport Humans Hardware static storage Brain emulations Hybrid: genetic material + emulations Electromagnetic waves Transmit electromagnetic waves / nano spacecraft via wormholes
Construct colony Macroscopic replicators Micro / nano replicators
Establish civilization Emulations + biological humans Cyborgs Emulations + biological humans Emulation cities (Hanson, 2008a, 2008b) Matrioshka brain (Bradbury, 2001)

In order to transport humans as emulations, they need to be uploaded. Uploading might be accomplished by some advanced form of scanning. Hans Moravec was one of the first to envision a form of brain scanning, by which the human brain would be incrementally uploaded in a destructive way (Moravec, 1988). Kurzweil and others envisioned non-destructive ways of uploading, for example by using nano-scale robots that scan the brain from within (Kurzweil, 2005, p.145).

Creating a copy of the brain is a daunting task. It is far more than copying just the structure of the brain, but also the structure of individual neurons and their linkages to other neurons. What is further needed is to copy the behavior of individual neurons and larger structures in the brain. This is similar to a technical system. The understanding of how the parts of a car are related to each other does not prescribe how they work together to perform the desired function of transporting passengers. It can only be inferred by painstakingly assessing how individual components and larger groups of components perform subfunctions. These subfunctions together perform the top-level function. This reverse engineering method is called a bottom-up approach. As an alternative, one can analyze functions top-down, by first decomposing the top-level functions into subfunctions. Similar reverse engineering approaches were proposed for creating brain emulations (Sandberg & Bostrom, 2008).

After an emulation has been created, it could be switched, copied, run, and also switched off as desired (Hanson, 2008a & 2008b). For an interstellar mission, emulations could be stored and first activated at the target destination. This would save energy for running emulations during flight. Having arrived at the target destination, one can imagine how activated emulations first assess the environment within the target star system and determine the best strategy for beginning colonization. Maybe a whole population of emulations is activated, which debates possible strategies and analyzes their potential outcomes. Robin Hanson imagines various types of emulations which also form hierarchies, depending on their simulation speed. Such emulation cities on Earth would consume a huge amount of power to sustain the emulations and their virtual environment in which they exist. Manipulations of the physical world are performed by various types of manipulators and robots (Hanson, 2008a & 2008b). A strategy for an interstellar mission would be the reactivation of an initial small population of emulations which make the initial decisions of how to proceed with colonization. Then, resources would be mined and processed, in order to increase computational capability and to create a larger number of emulations, which then create biological humans along with their habitats. Another option is the simultaneous transportation of zygotes and emulations.

A more advanced version of such a mission is the initial creation of an infrastructure within the target star system by using replicators and the construction of a receiver for electromagnetic signals, for example a laser beam. Once established, data for objects could be transmitted with light speed. This is the concept of teleportation. Teleportation was often deemed infeasible, as the amount of information to be transmitted for assembling a human body molecule by molecule would be prohibitive. For example, Roberts et al. argue that a total of 2.6*1042 bits are necessary for recreating the human brain (Roberts et al., 2012). The data for recreating the rest of the human body is insignificant compared to that number (1.2*1010 bits). With a data rate of about 3.0*1019 bits per second, it would take 4.85 trillion years to transmit a human. However, a close look into the assumptions made in the paper reveals that the so-called Bekenstein bound was used for calculating the data required to recreate the brain (Bekenstein, 73), (Lokhorst, 00). The Bekenstein bound describes the maximum information that is required to recreate a physical system down to the quantum level. It is doubtful that such an extremely detailed description is necessary. Current estimates for describing the brain down to a molecular level are rather in the range between 1022 – 1027 bits (Sandberg, 2008, p.80). This amount of data could be transmitted within an hour to ten years, assuming the same data rate of 3,0*1019 bits per second. Thus, teleportation might not be as far-off as suggested by the current literature. A mission architecture based on teleportation is shown in Figure 3.

One of the more speculative approaches to enable manned interstellar travel with almost no travel time is to use some form of faster-than-light approach. There is a whole plethora of conjectured faster-than light approaches (Davis et al., 2009). Sending pure data or nano probes through shortcuts in space-time is far easier than doing so with large manned spacecraft. Kurzweil speculates how microscopic wormholes might enable the transmission of data or nano probes to another place in the Universe (Kurzweil, 2005, p.354-355). A mission architecture based on this concept is shown in Figure 4.

Mission architectures

Digital interstellar missions open up a space of interesting mission architectures. Depending on the available technologies, various architectures are feasible, as shown in Table 2.

Table 2: Digital mission architectures and their enabling technologies

Technologies A B C D
Replicator technical systems required required required required
Replicator / Grow biological systems required required required required
Brain emulation required required required required
Teleportation required required
Wormholes required

 

Architectures A to D can be seen in the figures below, along with their mission sequence.

Architecture A

  1. Send replicator + emulator / storage spacecraft
  2. Create colony and resurrection infrastructure
  3. Create population
Fig. 1: Single spacecraft mission with digital and replicator payload. This so-called “bat chart” shows the mission sequence from left to right. The inclination of the arrows indicates how fast the spacecraft arrives at the target. The steeper, the faster.
Fig. 1: Single spacecraft mission with digital and replicator payload. This so-called “bat chart” shows the mission sequence from left to right. The inclination of the arrows indicates how fast the spacecraft arrives at the target. The steeper, the faster.

This is the simplest mission architecture for an emulation interstellar mission. The spacecraft consists of the emulator payload and a replicator payload which bootstraps local resources to manufacture the initial space colony. The emulations are subsequently downloaded and human bodies are created.

Architecture B

  1. Send replicator
  2. Create colony and resurrection infrastructure
  3. Send emulator / storage spacecraft
  4. Create population
Fig. 2: Split mission with separate replicator and digital payload
Fig. 2: Split mission with separate replicator and digital payload

Architecture B is based on two spacecraft. The replicator spacecraft is launched first, in order to initiate colony construction way before the emulator spacecraft arrives. This architecture makes sense if colony construction takes decades or centuries. The main advantage is the reduction of risk from a failure to construct the initial colony. The emulator spacecraft could be launched only if the colony is operational. Another advantage is the use of a different propulsion system for the emulator ship, allowing for a shorter trip duration than the replicator ship. A shorter trip duration reduces the risk of failures of on-board systems, which is more critical for the emulator ship as it has in principle a human payload on-board.

Architecture C

  1. Send replicator spacecraft
  2. Create receiver dishes in target star system
  3. Receive data for creating technical systems & humans
Fig. 3: Replicator mission which builds up a receiver for technologies and humans to be created within the star system
Fig. 3: Replicator mission which builds up a receiver for technologies and humans to be created within the star system

In order to teleport data, a receiver has to be constructed within the target star system first. This is done by the replicator spacecraft’s payload. Apart from the receiver, a molecular assembly facility or universal 3D-printer has to be constructed, which then recreates the original objects. The main advantage of this architecture is the travel duration for the objects transferred, as the data is transmitted is the speed of light.

Architecture D

  1. Send replicator spacecraft
  2. Build receiver
  3. Use wormholes to transmit information to receiver
  4. Create technological systems & humans
Fig. 4: Using a worm hole for transmitting data for technologies and humans with faster than light speeds
Fig. 4: Using a worm hole for transmitting data for technologies and humans with faster than light speeds

After the construction of a receiver and molecular assembly facility, data is transferred almost instantly through a worm hole or other exotic means.

Conclusions

The concept of brain emulation is often associated with the occurrence of the so-called technological singularity, which is often associated with the emergence of general artificial intelligence and its exponentially increasing capabilities. Whether or not it is reasonable to expect such a singularity to happen is the matter of intense debate among scholars (Sandberg, 2010), (Sandberg & Bostrom, 2011), (Goertzel, 2007). Personal conversations with a range of brain researchers have rather revealed a skeptical outlook on progress in creating brain emulations in the near future. Nevertheless, there is no doubt that progress is being made. Brain emulation and general artificial intelligence should not be discarded on the grounds of current or near-future infeasibility, as we are dealing with timeframes of decades to centuries until interstellar missions are conducted.

As a final remark, Launius & McCurdy point out that a posthuman civilization does not necessarily possess the motivation to conduct an interstellar mission (Launius & McCurdy, 2008, pp.218-219). Thus, one has to keep in mind that changing the human condition so profoundly will certainly have consequences for its behavior as well.

Although the prospects of mind uploading are controversial, its realization within the 21st century should not be deemed infeasible. It is even imperative to think about possible implications of this technology, as its realization would drastically change our civilization as well as it would revolutionize interstellar travel. How would it then feel to travel to the stars? After being scanned, would we suddenly wake up in a new body on an exoplanet? Would we instead pass our time in a virtual world crossing the space between the stars, finally transforming into a biological existence again? Fascinating but also somewhat chilling thoughts…


by Andreas Hein

References

Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333.

Davis, E. W., & Millis, M. G. (2009). Frontiers of propulsion science. American Institute of Aeronautics and Astronautics.

Goertzel, B. (2007). Human-level artificial general intelligence and the possibility of a technological singularity: A reaction to Ray Kurzweil’s The Singularity Is Near, and McDermott’s critique of Kurzweil. Artificial Intelligence, 171(18), 1161-1173.

Hanson, R. (2001). Economic growth given machine intelligence. Journal of Artificial Intelligence Research.

Hanson, R. (2008a). Economics of brain emulations. In Tomorrow’s people – proceedings of the james martin institute’s first world forum: EarthScan.

Hanson, R. (2008b). Economics of the singularity. Spectrum, IEEE, 45(6), 45-50.

Kurzweil, R. (2005). The Singularity Is Near: When Humans Transcend Biology, Penguin Books.

Launius, R. D. (2008). Robots in space: technology, evolution, and interplanetary travel. JHU Press.

Lokhorst, G. J. (2000, May). Why I am not a super-Turing machine. InHypercomputation Workshop, University College, London (Vol. 24).

Moravec, H. (1988). Mind children. Cambridge, MA: Harvard University Press.

Sandberg, A., & Bostrom, N. (2008). Whole brain emulation: A roadmap. Future of Humanity Institute, Oxford University. Available at: http://www.fhi.ox.ac.uk/brain-emulation-roadmap-report.pdf Accessed July, 3, 2010.

Sandberg, A. (2010). An overview of models of technological singularity. In Roadmaps to AGI and the future of AGI workshop, Lugano, Switzerland, Mar. 8th.

Sandberg, A., & Bostrom, N. (2011). Machine intelligence survey. Technical Report, 2011-1. Future of Humanity Institute, University of Oxford. www.fhi.ox.ac.uk/reports/2011-1. pdf.


Primary Sidebar

Blog

A Precursor Mission to Proxima Centauri

31 October 2024

A Mission to Five Near Earth Objects in 2030 Adam Hibberd We at i4is, together with our collaborators on the Phase I NIAC (NASA Innovative Advanced Concepts) at Space Initiatives Inc., have been contemplating precursors to the ultimate mission of sending laser sails to swarm our nearest neighbouring star, Proxima Centauri. A summary of the […]

Deflecting Apophis

26 October 2024

Adam Hibberd There have been some developments. I have been addressing the problem of how to deflect Apophis from its path if it were indeed on a collision course with Earth. My Apocalypse Plot gives the magnitude of ΔV at different points in Apophis’s orbit to send it on a course to JUST strike the […]

Apophis: More Monolythical Mathematical Musings.

29 September 2024

Adam Hibberd Apophis gets awfully close on Friday April 13th 2029 (within GEO altitude). Its orbit is altered by the encounter with Earth and the obvious question is will there be any further possible encounters? Some of you may remember I have worked on the practicalities of sending laser-accelerated sails to intercept Apophis as it […]

Errors in Velocity Due to an Interstellar Probe’s Fast Encounter with a Star

23 July 2024

Adam Hibberd A spacecraft is travelling on a very hyperbolic orbit w.r.t. an object X (possibly a star) which has gravitational mass, μ, meaning the spacecraft is only slightly deflected from its direction of motion. Our task is to quantify the errors in velocity, both longitudinal and transverse, associated with this encounter compared to simply […]

‘Oumuamua: Lasers in Space

16 May 2024

Adam Hibberd In my latest research, I have been considering the case of using laser structures in space to accelerate space laser sails to sufficient speed so that they will ultimately reach the first discovered interstellar object, 1I/’Oumuamua, within a matter of years from launch, or even as soon as a year. This is clearly […]

Measurement of Mass by Space Sails

16 February 2024

Adam Hibberd I’ve been doing a little algebra. Let me state the problem. Let us say we have a swarm of space sails flying edge on to the interstellar medium (ISM). This swarm lies in a plane at right angles to its velocity relative to this ISM. Now lets bring in an element of the […]

Project Lyra Mission Guide

26 January 2024

Adam Hibberd I provide for you a chart of some missions to 1I/’Oumuamua investigated by Project Lyra. The green rows use chemical propulsion, the blue use nuclear thermal propulsion (NTP) and the pink exploit laser sails. This table will be updated when new research becomes available. For more detail, zoom in with your mouse (Ctrl+scroll […]

Project Lyra: A Solar Oberth at 10 Solar Radii

5 January 2024

Adam Hibberd I have recently returned my attention to the Solar Oberth mission to ‘Oumuamua. For readers not familiar with this celestial body, 1I/’Oumuamua was the first interstellar object to be discovered passing through our Solar System, is now out of range of our most powerful telescopes and has left scientists with many questions in […]

Swarming Proxima

20 November 2023

Adam Hibberd Breakthrough Starshot is the Initative to send a probe at 20% light speed (0.2c) to the nearest neighbouring star Proxima Centauri. But how do we achieve such a high speed? It turns out that if we have an extremely powerful laser (and exponential advances in tech over the next decades will mean that […]

Laser and Sail in Earth Orbit with Evolutionary Neurocontrol

24 October 2023

Adam Hibberd In my last post I explained how my software development, Optimum Interplanetary Trajectory Software (OITS), seems to achieve miracles of intelligent design in a fashion analogous to evolution, though in fact with both cases evidently no intelligence is involved – instead simple mechanisms combined with iteration are at work. This concept stimulated me […]

OITS Takes on Evolution

10 September 2023

Adam Hibberd The more I think about evolution through natural selection the more I see analogues to my software development Optimum Interplanetary Trajectory Software. (I should make it clear at this early stage in my post that OITS does NOT employ a genetic/evolutionary algorithm approach, I shall elucidate below.) You see there is NO intent […]

How Close did ‘Oumuamua Approach Each of the Inner Planets?

2 September 2023

Adam Hibberd A view of the distance of ‘Oumuamua from each of the Inner Planets as it rounded the sun, reached perihelion and then sped away again. Mars was just about as far away as it could possibly have been from ‘Oumuamua. ‘Oumuamua came very close to Earth (around 0.16 au). It came no closer […]

Was Loeb’s Bolide Interstellar?

1 September 2023

Adam Hibberd Loeb’s interstellar spherules have caused controversy and indignation amongst experts in the science community. For those of you not-in-the-know, Loeb travelled to the site of a proposed interstellar meteor (his designation: IM1) which he had identified in a catalogue of bolides held by NASA and then discovered in the ocean tiny metallic blobs he […]

‘Oumuamua – a Sci-Fi Story or Reality?

23 August 2023

Adam Hibberd Let me tell you all a story. It is the story of life and its purpose. I ask you to bear with me here as Project Lyra and ‘Oumuamua will make an appearance eventually – I promise. Many of you will be familiar with the idea that the universe might be some kind […]

‘Oumuamua: The Mystery Unfolds

20 August 2023

Adam Hibberd Those of you who have been following my Project Lyra blogs know that I have over the past year or so done some extensive analysis of ‘Oumuamua’s trajectory. You may refer to previous posts on the i4is website to get an understanding of exactly what I have been up to, or alternatively continue […]

Psyche: OITS has Something to Say

18 August 2023

Adam Hibberd Here’s a mission to asteroid Psyche for you. Initial theories favoured Psyche as a core of a failed protoplanet, containing vast reserves of metals. More recent research, however favour alternative origin theories. Whatever is the case, we are about to discover its true nature and this would be a huge step forwards for […]

Project Lyra: Ignore the outlier and miss an opportunity

31 July 2023

Adam Hibberd Wouldn’t you like an answer to the question: What is ‘Oumuamua? There have been many theories, but there is no real consensus. The only way to answer this would be to send a spacecraft to observe ‘Oumuamua in situ but the total lack of will-power to get this question answered, in my view, […]

The Case of Fireball CNEOS 2017-10-09

28 July 2023

Adam Hibberd Around the middle of last year I read an article by Siraj and Loeb in which they analysed closely a database of bolides (which are meteor fireballs) maintained by NASA-JPL CNEOS (Center for Near Earth Object Studies). In so doing they identified at least one bolide as having an interstellar origin (designated CNEOS […]

Project Lyra: The Mission to Resolve a Mystery

4 July 2023

Adam Hibberd Project Lyra is the study of the feasibility of a spacecraft mission to the first interstellar object to be discovered passing through our Solar System, designated 1I/’Oumuamua. I have now authored and co-authored a total of nine Project Lyra papers. The considerable number of science papers (many now peer-reviewed, several still to be […]

Optimum Interplanetary Trajectory Software: The Secrets Revealed

25 June 2023

Adam Hibberd In the UK Spring of 2017, I derived the theory for solving interplanetary trajectories, which enabled me to develop a powerful software tool for optimising hight thrust spacecraft missions, a tool which I called Optimum Interplanetary Trajectory Software (OITS). For those of you fascinated by mathematics, in particular mathematical formulae, the two equations […]

Laser Sails: Trajectories Using Optimum Interplanetary Trajectory Software

16 June 2023

It struck me a while ago that I have developed this extremely effective tool for solving interplanetary trajectories (OITS), so how would I be able to exploit it for alternative applications – applications which would be beyond its originally intended purpose, that of designing trajectories for chemically propelled spacecraft (and in the process assuming impulsive […]

Mars Ride-Share: an Opportunity Not to be Missed

14 June 2023

Adam Hibberd I was recently discussing with my colleagues across the pond, the potential for mounting a cheap mission to some alternative, yet interesting destination in the inner Solar System, by exploiting a ‘ride-share’ with a more important mission, possibly one organised by NASA or ESA. It struck me that since there have been, and […]

C/2014 UN271 the comet which will NOT collide with the Earth

4 April 2023

Adam Hibberd An Oort cloud comet is composed primarily of dust and ice and has spent most of its life in the far-flung distant reaches of our Solar System (2,000 au to 200,000 au from our Sun). It is eventually nudged inward towards our Sun by gravitational influences such as galactic tides or some passing […]

Project Lyra: Falcon Heavy Expendable

27 March 2023

Adam Hibberd Following on from my previous blog where I studied the capability of the up-coming Ariane 6 4 launcher in terms of delivering a spacecraft on a course to intercept the first interstellar object to be discovered, ‘Oumuamua, I continue this logical progression with analysis of a more powerful launcher, the Falcon Heavy. The […]

Project Lyra: Using an Ariane 6

16 March 2023

Adam Hibberd Ariane 6 is the up-and-coming successor to the old Arianespace workhorse, Ariane 5, and may secure its maiden flight later this year. There will ultimately be two strap-on booster configurations from which to choose, one with two boosters, and the more powerful version with four. I thought it might be worthwhile assessing the […]

Optimum Interplanetary Trajectory Software (OITS)

15 February 2023

Adam Hibberd I started development of this software, OITS, in April 2017 on a holiday near the little town of Cheadle, in the county of Staffordshire, UK. I started from the very basics, deriving the theory during the holiday and continuing shortly thereafter, and then immersed myself in the implementation of the equations I had […]

Music of ‘Oumuamua

30 January 2023

Adam Hibberd If you have a fascination for the mysterious interstellar object ‘Oumuamua and are musically inclined, please check out these two pieces by my musician friend Robin Jax based on recordings of me playing two piano compositions of mine. Whether it be Robin’s neurodivergence, or my own schizophrenia, we have both overcome our respective […]

Things to Come

22 January 2023

Adam Hibberd I sometimes wonder at the short-sightedness of people. The sort of people who scoff and scorn at the far-sighted work which most of my work colleagues and I have dedicated a good deal of our lives to pursue, largely voluntarily. They may argue: We have such and such a problem NOW, how are […]

Project Lyra: Using Jupiter Alone to get to ‘Oumuamua

9 January 2023

Adam Hibberd Here is a ‘pork chop plot’ of missions to ‘Oumuamua using a Jupiter powered gravitational assist (or a Jupiter Oberth Manoeuvre, JOM). Refer to the Figure (1). Essentially, what we have are three coordinates where firstly the horizontal axis shows the launch date, the vertical axis shows the flight duration, and for every […]

‘Oumuamua: The State of Play

30 December 2022

Adam Hibberd In 2017, an interstellar object was discovered, the first ever to be detected. It was observed by the Hawaiian observatory Pan-STARRS, subsequently studied by many telescopes before disappearing into the distance in January 2018. An estimate on the number density, N (how many per unit volume), in interstellar space was determined based on […]

Why the Stars?

24 November 2022

Adam Hibberd November 2022 People may ask the question why we should venture beyond our solar system to explore the stars? Why should we commit precious resources to such an endeavour? I have an answer to this which may to some degree be a personal one. The question boils down to why are we curious? […]

Exploring ‘Oumuamua’s Trajectory – Further Notes

9 November 2022

Adam Hibberd November 2022 In my last blog I reported the progress of my work regarding the intriguing little conundrum of the first interstellar object (ISO) to be discovered, designated ‘Oumuamua, in particular my research into its orbit. In fact ‘Oumuamua is puzzling on many counts and I have also in a previous blog elaborated […]

Exploring ‘Oumuamua’s Perihelion Date

31 October 2022

Adam Hibberd October 2022 This blog may be a bit cheeky but do take heed of the last line before jumping to any conclusions! I’ve been mucking around with ‘Oumuamua’s orbit on my computer lately. Mucking around in the sense of playing with its orbital parameters and seeing what crops up. Those of you who […]

3I/ATLAS Mission to Launch in 2035

3 November 2025

Adam Hibberd As a consequence of exploring the Solar Oberth option to catch up with 3I/ATLAS, using my software development Optimum Interplanetary Trajectory Software (OITS), I have discovered that a mission exists IN THE FUTURE, with a launch in 10 years time, i.e. in 2035. The video animation can be found on my YouTube channel […]

Members Newsletter – October

30 October 2025

News from i4is The next meeting of the i4is SF Book Club is Thursday, November 20th at 1900 UK time (via Zoom), if you would like to join in send a request through to bookclub@i4is.org.   The reading material this month will be 2 short stories from “The Road to Science Fiction Volume 4 – From […]

On a Second Moon and the Zond 1 Probe.

28 October 2025

Adam Hibberd 2025 PN7, the widely touted newly discovered quasi-satellite of the Earth, has stirred-up in me a renewed fascination for identifying apparently natural objects as old derelict interplanetary missions. So is this object natural or technogenic? If I were to say 50:50 this could be the failed Russian Zond 1 probe to Venus, what […]

Members Newsletter – September

30 September 2025

Origins of Life: The Possible and the ActualIn Origins of Life: The Possible and the Actual (https://www.preprints.org/manuscript/202508.1593/v1) researchers from Universitat Pompeu Fabra, Barcelona (Ricard Sole), Santa Fe Institute USA (Chris Kempes) and University of York, UK (Susan Stepney) consider questions of how life forms, whether life is an inevitable outcome, and how diverse its presentation […]

Join i4is for a journey to the stars!

Members get access to exclusive videos. Here's a taster:

Join now

Footer

Contact i4is

Initiative for Interstellar Studies
27/29 South Lambeth Road
London, SW8 1SZ
United Kingdom

info@i4is.org

Starship Blog

A Precursor Mission to Proxima Centauri

Deflecting Apophis

Apophis: More Monolythical Mathematical Musings.

Errors in Velocity Due to an Interstellar Probe’s Fast Encounter with a Star

‘Oumuamua: Lasers in Space

Measurement of Mass by Space Sails

Project Lyra Mission Guide

Project Lyra: A Solar Oberth at 10 Solar Radii

Swarming Proxima

Laser and Sail in Earth Orbit with Evolutionary Neurocontrol

OITS Takes on Evolution

How Close did ‘Oumuamua Approach Each of the Inner Planets?

Was Loeb’s Bolide Interstellar?

‘Oumuamua – a Sci-Fi Story or Reality?

‘Oumuamua: The Mystery Unfolds

Psyche: OITS has Something to Say

Project Lyra: Ignore the outlier and miss an opportunity

The Case of Fireball CNEOS 2017-10-09

Project Lyra: The Mission to Resolve a Mystery

Optimum Interplanetary Trajectory Software: The Secrets Revealed

Laser Sails: Trajectories Using Optimum Interplanetary Trajectory Software

Mars Ride-Share: an Opportunity Not to be Missed

C/2014 UN271 the comet which will NOT collide with the Earth

Project Lyra: Falcon Heavy Expendable

Project Lyra: Using an Ariane 6

Optimum Interplanetary Trajectory Software (OITS)

Music of ‘Oumuamua

Things to Come

Project Lyra: Using Jupiter Alone to get to ‘Oumuamua

‘Oumuamua: The State of Play

Why the Stars?

Exploring ‘Oumuamua’s Trajectory – Further Notes

Exploring ‘Oumuamua’s Perihelion Date

3I/ATLAS Mission to Launch in 2035

Members Newsletter – October

On a Second Moon and the Zond 1 Probe.

Members Newsletter – September

Donate

The Initiative for Interstellar Studies is entirely dependent upon the goodwill of its volunteer teams, the minor amounts we receive from our activities and the sale of our merchandise but also the kindness of donors. In order to advance our mission of achieving interstellar flight over the next century, we need your help and support. If you are feeling generous we would very much appreciate your help in moving our mission forward. Make a donation » about Donate

  • Shop
  • Donate
  • Privacy & Cookies
  • Contact us

Initiative for Interstellar Studies Limited
27-29 South Lambeth Road, London, SW8 1SZ
Company Limited by Guarantee No: 09062458 (England and Wales)
Copyright © Initiative for Interstellar Studies · Built by Jason King

Manage Cookie Consent
To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behaviour or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
Functional Always active
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
Preferences
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
Statistics
The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
Marketing
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
  • Manage options
  • Manage services
  • Manage {vendor_count} vendors
  • Read more about these purposes
View preferences
  • {title}
  • {title}
  • {title}